Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 187, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168076

RESUMO

Soils are losing increasing amounts of carbon annually to freshwaters as dissolved organic matter (DOM), which, if degraded, can offset their carbon sink capacity. However, the processes underlying DOM degradation across environments are poorly understood. Here we show DOM changes similarly along soil-aquatic gradients irrespective of environmental differences. Using ultrahigh-resolution mass spectrometry, we track DOM along soil depths and hillslope positions in forest catchments and relate its composition to soil microbiomes and physico-chemical conditions. Along depths and hillslopes, we find carbohydrate-like and unsaturated hydrocarbon-like compounds increase in abundance-weighted mass, and the expression of genes essential for degrading plant-derived carbohydrates explains >50% of the variation in abundance of these compounds. These results suggest that microbes transform plant-derived compounds, leaving DOM to become increasingly dominated by the same (i.e., universal), difficult-to-degrade compounds as degradation proceeds. By synthesising data from the land-to-ocean continuum, we suggest these processes generalise across ecosystems and spatiotemporal scales. Such general degradation patterns can help predict DOM composition and reactivity along environmental gradients to inform management of soil-to-stream carbon losses.


Assuntos
Matéria Orgânica Dissolvida , Microbiota , Compostos Orgânicos/análise , Solo/química , Carbono
2.
Sci Rep ; 14(1): 1725, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242898

RESUMO

Soil sampling for environmental DNA in remote and semi-remote locations is often limited due to logistical constraints surrounding sample preservation, including no or limited access to a freezer. Freezing at - 20 °C is a common DNA preservation strategy, however, other methods such as desiccation, ethanol or commercial preservatives are available as potential alternative DNA preservation methods for room temperature storage. In this study, we assessed five preservation methods (CD1 solution, 95% Ethanol, Dry & Dry silica gel packs, RNAlater, LifeGuard) along with freezing at - 20 °C, against immediate extraction on organic and mineral soils for up to three weeks of preservation. We assessed direct effects on DNA concentration and quality, and used DNA metabarcoding to assess effects on bacterial and fungal communities. Drying with Dry & Dry led to no significant differences from immediate extraction. RNAlater led to lower DNA concentrations, but effects on community structures were comparable to freezing. CD1, LifeGuard and Ethanol either caused immediate significant shifts in community structure, degradation of DNA quality or changes in diversity metrics. Overall, our study supports the use of drying with silica gel packs as a cost-effective, and easily applied method for the short-term storage at room temperature for DNA-based microbial community analyses.


Assuntos
DNA , Microbiota , Sílica Gel , Solo , Etanol
3.
Sci Rep ; 12(1): 4171, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264620

RESUMO

There is interest in utilizing wood ash as an amendment in forestry operations as a mechanism to return nutrients to soils that are removed during harvesting, with the added benefit of diverting this bioenergy waste material from landfill sites. Existing studies have not arrived at a consensus on what the effects of wood ash amendments are on soil biota. We collected forest soil samples from studies in managed forests across Canada that were amended with wood ash to evaluate the effects on arthropod, bacterial and fungal communities using metabarcoding of F230, 16S, 18S and ITS2 sequences as well as enzyme analyses to assess its effects on soil biotic function. Ash amendment did not result in consistent effects across sites, and those effects that were detected were small. Overall, this study suggests that ash amendment applied to managed forest systems in amounts (up to 20 Mg ha-1) applied across the 8 study sties had little to no detectable effects on soil biotic community structure or function. When effects were detected, they were small, and site-specific. These non-results support the application of wood ash to harvested forest sites to replace macronutrients (e.g., calcium) removed by logging operations, thereby diverting it from landfill sites, and potentially increasing stand productivity.


Assuntos
Poluentes do Solo , Solo , Biota , Agricultura Florestal , Florestas , Solo/química , Poluentes do Solo/análise
4.
Ecol Appl ; 30(4): e02077, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31971643

RESUMO

Riparian zones contain areas of strong hydrological connectivity between land and stream, referred to as variable source areas (VSAs), and are considered biogeochemical control points. However, little is known about whether VSAs influence stream communities and whether this connectivity is affected by forest management. To address this, we used multiple biotic and abiotic indicators to (1) examine the influence of VSAs on riparian vegetation and stream ecosystems by comparing VSA and non-VSA reaches and (2) explore how forest management may affect the influence of VSAs on stream ecosystems. We detected some significant differences between VSA and non-VSA reaches in the riparian vegetation (greater understory and lower tree density) and stream ecosystem indicators (greater dissolved organic matter aromaticity, microbial biomass, peroxidase activity and collector-gatherer density, and lower dissolved organic carbon concentrations, algal biomass, and predatory macroinvertebrate density), which suggests that VSAs may create a more heterotrophic ecosystem locally. However, we show some evidence that forest management activities (specifically, road density) can alter the influence of VSAs and eliminate the differences observed at lower forest management intensities, and that the most hydrologically connected areas seem more sensitive to disturbance. Therefore, we suggest that the heterogeneity in hydrological connectivity along riparian zones should be considered when planning forest harvesting operations and road building (e.g., wider riparian buffers around VSAs).


Assuntos
Ecossistema , Rios , Biomassa , Florestas , Árvores
5.
Sci Rep ; 9(1): 18218, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796780

RESUMO

Terrestrial arthropod fauna have been suggested as a key indicator of ecological integrity in forest systems. Because phenotypic identification is expert-limited, a shift towards DNA metabarcoding could improve scalability and democratize the use of forest floor arthropods for biomonitoring applications. The objective of this study was to establish the level of field sampling and DNA extraction replication needed for arthropod biodiversity assessments from soil. Processing 15 individually collected soil samples recovered significantly higher median richness (488-614 sequence variants) than pooling the same number of samples (165-191 sequence variants) prior to DNA extraction, and we found no significant richness differences when using 1 or 3 pooled DNA extractions. Beta diversity was robust to changes in methodological regimes. Though our ability to identify taxa to species rank was limited, we were able to use arthropod COI metabarcodes from forest soil to assess richness, distinguish among sites, and recover site indicators based on unnamed exact sequence variants. Our results highlight the need to continue DNA barcoding local taxa during COI metabarcoding studies to help build reference databases. All together, these sampling considerations support the use of soil arthropod COI metabarcoding as a scalable method for biomonitoring.


Assuntos
Artrópodes/genética , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Variação Genética/genética , Animais , DNA/genética , DNA/isolamento & purificação , Florestas , Análise de Sequência de DNA/métodos , Solo
6.
Conserv Biol ; 32(6): 1457-1463, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29923638

RESUMO

In 2008, a group of conservation scientists compiled a list of 100 priority questions for the conservation of the world's biodiversity. However, now almost a decade later, no one has yet published a study gauging how much progress has been made in addressing these 100 high-priority questions in the peer-reviewed literature. We took a first step toward reexamining the 100 questions to identify key knowledge gaps that remain. Through a combination of a questionnaire and a literature review, we evaluated each question on the basis of 2 criteria: relevance and effort. We defined highly relevant questions as those that - if answered - would have the greatest impact on global biodiversity conservation and quantified effort based on the number of review publications addressing a particular question, which we used as a proxy for research effort. Using this approach, we identified a set of questions that, despite being perceived as highly relevant, have been the focus of relatively few review publications over the past 10 years. These questions covered a broad range of topics but predominantly tackled 3 major themes: conservation and management of freshwater ecosystems, role of societal structures in shaping interactions between people and the environment, and impacts of conservation interventions. We believe these questions represent important knowledge gaps that have received insufficient attention and may need to be prioritized in future research.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Água Doce
7.
Sci Rep ; 8(1): 4578, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531276

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

8.
Sci Rep ; 7(1): 12777, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986575

RESUMO

Cost-effective, ecologically relevant, sensitive, and standardized indicators are requisites of biomonitoring. DNA metabarcoding of macroinvertebrate communities is a potentially transformative biomonitoring technique that can reduce cost and time constraints while providing information-rich, high resolution taxonomic data for the assessment of watershed condition. Here, we assess the utility of DNA metabarcoding to provide aquatic indicator data for evaluation of forested watershed condition across Canadian eastern boreal watersheds, subject to natural variation and low-intensity harvest management. We do this by comparing the similarity of DNA metabarcoding and morphologically derived macroinvertebrate metrics (i.e. richness, % Ephemeroptera, Plecoptera and Trichoptera, % chironomid), and the ability of DNA metabarcoding and morphological metrics to detect key gradients in stream condition linked to forested watershed features. Our results show consistency between methods, where common DNA metabarcoding and morphological macroinvertebrate metrics are positively correlated and indicate the same key gradients in stream condition (i.e. dissolved oxygen, and dissolved organic carbon, total nitrogen and conductivity) linked to watershed size and shifts in forest composition across watersheds. Our study demonstrates the potential usefulness of macroinvertebrate DNA metabarcoding to future application in broad-scale biomonitoring of watershed condition across environmental gradients.


Assuntos
Código de Barras de DNA Taxonômico , Invertebrados/anatomia & histologia , Invertebrados/classificação , Rios , Animais , Geografia , Ontário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...